
1

Efficient Ranked Access over Joins

Nikolaos Tziavelis

Northeastern University, Boston

Website: https://northeastern-datalab.github.io/anyk/

Advisors: Wolfgang Gatterbauer, Mirek Riedewald

VLDB 2023 PhD Workshop

https://northeastern-datalab.github.io/anyk/

2

Query Processing & Optimization in Data Systems

Query
(declarative)

Data

… but which algorithms does the query optimizer know?
• Worst-case optimal joins not known until 2012 [N+12]
• Factorization techniques for aggregates only recently starting to be adopted [G+21]
• For complex queries, only naïve algorithms available

Query Optimizer

Possible plans == Algorithms
1. Predict cost
(cardinality estimation + cost model)
2. Search

Chosen plan
(algorithm)

How to

execute

this?

[N+12] Ngo, Porat, Ré, Rudra. Worst-case optimal join algorithms. PODS’12 https://doi.org/10.1145/2213556.2213565

[G+21] Gupta, Mhedhbi, Salihoglu. Columnar Storage and List-based Processing for Graph Database Management Systems. VLDB’21 https://doi.org/10.14778/3476249.3476297

https://doi.org/10.1145/2213556.2213565
https://doi.org/10.14778/3476249.3476297

3

Many-to-Many Joins

• Many-to-many joins are challenging because the output can be huge.

• Ex: Subgraph queries (2-hop paths, tree patterns, triangles, etc.)

FROM

1

2

3

4

TO

1

1

2

2

2 5

FROM

1

2

3

4

TO

1

1

2

2

2 5

1 4 1 4

⋈
TO=FROM

EDGES EDGES

1 2

3

4 5

Relations of size 𝑛 ⇒
Join output 𝑂(𝑛2)

… and even larger with
more joins

2-hop paths

4

Avoiding Join Materialization

• Materializing the join output may be infeasible (regardless of the
join algorithm) because of its size.

• Often, we may not be interested in the join itself but in some
operation on top of the join.

• Can we then avoid materializing it?

⋈ (Multi-way)
Join

⊕ Operator with small output
(aggregation, top-k, median, …)“Push down”?

→ combined algorithm
whose running time does not

depend on the join output

5

Research Overview

Top-k / Any-k
[VLDB’20, arXiv’22]

Quantiles / Direct Access
[PODS’21, TODS’23, PODS’23]

More general
inequality joins
[VLDB’21]

[arXiv’22] Tziavelis, Gatterbauer, Riedewald. Any-k Algorithms for Enumerating Ranked Answers to Conjunctive Queries. arXiv’22 https://arxiv.org/abs/2205.05649

[VLDB’20] Tziavelis, Ajwani, Gatterbauer, Riedewald, Yang. Optimal Algorithms for Ranked Enumeration of Answers to Full Conjunctive Queries. PVLDB’20 https://doi.org/10.14778/3397230.3397250

[VLDB’21] Tziavelis, Gatterbauer, Riedewald. Beyond Equi-joins: Ranking, Enumeration and Factorization. PVLDB’21 https://doi.org/10.14778/3476249.3476306

[PODS’21] Carmeli, Tziavelis, Gatterbauer, Kimelfeld, Riedewald. Tractable Orders for Direct Access to Ranked Answers of Conjunctive Queries. PODS’21 https://doi.org/10.1145/3452021.3458331

[TODS’23] Carmeli, Tziavelis, Gatterbauer, Kimelfeld, Riedewald. Tractable Orders for Direct Access to Ranked Answers of Conjunctive Queries. TODS’23 https://doi.org/10.1145/3578517

⋈

↑↓

[PODS’23] Tziavelis, Carmeli, Gatterbauer, Kimelfeld, Riedewald. Efficient Computation of Quantiles over Joins. PODS’23 https://doi.org/10.1145/3584372.3588670

“Ranked Access”:
1) Order by ranking function
2) Retrieve specific answers
according to ranking

No knowledge of k
(~incremental sorting)

https://arxiv.org/abs/2205.05649
https://doi.org/10.14778/3397230.3397250
https://doi.org/10.14778/3476249.3476306
https://doi.org/10.1145/3452021.3458331
https://doi.org/10.1145/3578517
https://doi.org/10.1145/3584372.3588670

6

Outline

•Motivation & Research Overview
•Highlights of Results

– Any-k

– Quantile Queries
• Future Directions

7

select x, y, z, u,
wR + wS + wT as weight

from R, S, T
where R.y=S.y and S.z=T.z
order by weight ASC
limit k any-k

Any-k for Joins: Example

(1, 1, 4, 1, 111) (2, 1, 4, 1, 112) (1, 1, 6, 4, 231) …Increasing sum

of weights

R

𝑥

1

2

3

4

𝑦

1

1

2

2

S

𝑦

1

1

1

2

𝑧

4

5

6

7

T

𝑧 𝑢

4 1

4 2

5 3

6 4

join join

𝑤𝑅 𝑤𝑆 𝑤𝑇

1

2

3

4

10

20

30

40

100

300

400

200

Ranking function

[VLDB’20] Tziavelis, Ajwani, Gatterbauer, Riedewald, Yang. Optimal Algorithms for Ranked Enumeration of Answers to Full Conjunctive Queries. PVLDB’20
https://doi.org/10.14778/3397230.3397250

https://doi.org/10.14778/3397230.3397250

8

Any-k for Joins: Ranking Functions and Complexity

R

𝑥

1

2

3

4

𝑦

1

1

2

2

S

𝑦

1

1

1

2

𝑧

4

5

6

7

T

𝑧 𝑢

4 1

4 2

5 3

6 4

join join

𝑤𝑅 𝑤𝑆 𝑤𝑇

1

2

3

4

10

20

30

40

100

300

400

200

Ranking functions
SUM: 1+10+100
MAX: max(1,10,100)
LEX: first 𝑤𝑅, then 𝑤𝑅, then 𝑤𝑇

Time-to-kth answer+ acyclic join
𝑂(DB + 𝑘 log 𝑘)

independent of join output size

[VLDB’20] Tziavelis, Ajwani, Gatterbauer, Riedewald, Yang. Optimal Algorithms for Ranked Enumeration of Answers to Full Conjunctive Queries. PVLDB’20
https://doi.org/10.14778/3397230.3397250

https://doi.org/10.14778/3397230.3397250

9

Any-k and Shortest Paths

• Any-k = generalization of k-shortest paths on a Directed Acyclic Graph

• We adapt and improve:

𝑝1

𝑝2 𝑠2

𝑠1
𝑝1 + 𝑠1 ≤ 𝑝1 + 𝑠2

𝑝2 + 𝑠1 ≤ 𝑝2 + 𝑠2

Prefixes Suffixes

infer

𝑂(𝐺 + 𝑘(log𝑁 + ℓ))𝑂(𝐺 + 𝑘(log 𝑘 + ℓ))
Improvement for large k (k can be Nℓ)

(for small k, 𝑂(|𝐺|) dominates)

Faster than sorting for entire sorted output

Previously best known [E98]

#nodespath length

[E98] Eppstein. Finding the k shortest paths. SIAM Journal on computing 1998. https://doi.org/10.1137/S0097539795290477

Property:
Strong-Subset-
Monotonicity

[arXiv’22] Tziavelis, Gatterbauer, Riedewald. Any-k Algorithms for Enumerating Ranked Answers to Conjunctive Queries. arXiv’22 https://arxiv.org/abs/2205.05649

https://doi.org/10.1137/S0097539795290477
https://arxiv.org/abs/2205.05649

10

Any-k Implementation

ℓ = path length = #joins

Query: Negative-sentiment paths on Reddit
- 572k edges
- length-ℓ paths
- timestamps in increasing order
- sentiment in decreasing order
- top results by sum of readability

select *, R1.Readability + R2.Readability as weight
from Reddit R1, Reddit R2
where R2.Source = R1.Target

AND R2.Timestamp > R1.Timestamp
AND R2.Sentiment < R1.Sentiment

order by weight desc
limit 1000

Any-k

System X

PSQL

JoinFirst
Out-of-Memory

Top-1000

[VLDB’21] Tziavelis, Gatterbauer, Riedewald. Beyond Equi-joins: Ranking, Enumeration and Factorization. PVLDB’21 https://doi.org/10.14778/3476249.3476306

SQL for ℓ = 2:

Join size

https://doi.org/10.14778/3476249.3476306

11

Outline

•Motivation & Research Overview
•Highlights of Results

– Any-k

– Quantile Queries
• Future Directions

12

Quantile Join Queries

When can we find the quantile
without computing the join?

==
Achieve time

𝑂(DB polylog|DB|)

⋈

↑↓

relative position 50%

𝜑%

SUM, MAX,
MIN, LEX, …

[PODS’23] Tziavelis, Carmeli, Gatterbauer, Kimelfeld, Riedewald. Efficient Computation of Quantiles over Joins. PODS’23 https://doi.org/10.1145/3584372.3588670

e.g., pair of employees from the same

department with median total salary

https://doi.org/10.1145/3584372.3588670

13

𝑅 𝑥, 𝑦 ⋈ 𝑆 𝑦, 𝑧 ⋈ 𝑇(𝑧, 𝑢)

• LEX

- 𝑥 → 𝑦 → 𝑧 → 𝑢 ✓

- 𝑧 → 𝑥 → 𝑢 ✓

• MIN

- min(𝑥, 𝑦, 𝑧, 𝑢)✓

- max(𝑥, 𝑢) ✓

• SUM

- 𝑥 + 𝑦 + 𝑧 + 𝑢  (reduction from triangle detection)

- 𝑥 + 𝑦 + 𝑧 ✓

Quantile Join Queries: Examples

𝜑|OUT|

(𝜑 ± 𝜀)|OUT|

(0.5 ± 0.01)|OUT|

[49% − 51%]

But can be approximated efficiently!

[PODS’23] Tziavelis, Carmeli, Gatterbauer, Kimelfeld, Riedewald. Efficient Computation of Quantiles over Joins. PODS’23 https://doi.org/10.1145/3584372.3588670

https://doi.org/10.1145/3584372.3588670

14

Dichotomy for Quantile Join Queries

SJ-free
JQs

Acyclic
LEX/MIN/MAX ✔
Approx SUM ✔

SUM ✔

SUM indep. vars ≤ 𝟐
& Length of chordless path

between SUM vars ≤ 𝟑

Lower bounds only for

self-join-free queries

and conditional on

hardness hypotheses

Dichotomy: Characterize the tractability of every query and common ranking function

R A, B ⋈ S B, C ⋈ T(C, A)

R A, B ⋈ S B, C ⋈ T(C, D)

R A, B ⋈ S B, C

[PODS’23] Tziavelis, Carmeli, Gatterbauer, Kimelfeld, Riedewald. Efficient Computation of Quantiles over Joins. PODS’23 https://doi.org/10.1145/3584372.3588670

[TODS’23] Carmeli, Tziavelis, Gatterbauer, Kimelfeld, Riedewald. Tractable Orders for Direct Access to Ranked Answers of Conjunctive Queries. TODS’23 https://doi.org/10.1145/3578517

https://doi.org/10.1145/3584372.3588670
https://doi.org/10.1145/3578517

15

Outline

•Motivation & Research Overview
•Highlights of Results

– Any-k

– Quantile Queries
• Future Directions

16

Future Directions

• What other operations can we support over joins without paying
the cost of the join?

• What other types of joins can we support?

• Adopting these algorithms in practice:

1. Implementation for quantile algorithms

2. Any-k integration with a DBMS

• Stronger guarantees (instance-optimality)

• Algorithms for distributed computation

Website: https://northeastern-datalab.github.io/anyk/

Thank you!

https://northeastern-datalab.github.io/anyk/

	Slide 1: Efficient Ranked Access over Joins
	Slide 2: Query Processing & Optimization in Data Systems
	Slide 3: Many-to-Many Joins
	Slide 4: Avoiding Join Materialization
	Slide 5: Research Overview
	Slide 6
	Slide 7
	Slide 8
	Slide 9: Any-k and Shortest Paths
	Slide 10: Any-k Implementation
	Slide 11
	Slide 12: Quantile Join Queries
	Slide 13: Quantile Join Queries: Examples
	Slide 14: Dichotomy for Quantile Join Queries
	Slide 15
	Slide 16: Future Directions

